.. include:: ../defs.hrst .. _CarbonStore: Internal carbon store and exudation ''''''''''''''''''''''''''''''''''' Note: the internal carbon store is currently only implemented for fixed plankton elemental ratios (i.e., :varlink:`DARWIN_ALLOW_NQUOTA`, :varlink:`DARWIN_ALLOW_PQUOTA`, :varlink:`DARWIN_ALLOW_FEQUOTA`, :varlink:`DARWIN_ALLOW_SIQUOTA` all undefined). With :varlink:`DARWIN_ALLOW_CSTORE` defined, nutrient availability limits growth directly rather than via the photosynthesis rate. The maximum photosynthesis rate (and with it carbon uptake) becomes independent of nutritient limitation, .. math:: P^{{\mathrm{C}}{\op{m}}}_j = P_{{\mathrm{C}},j}^{\max} f^{{{\text{phy}}}}_j(T) \gamma_{\op{pCO2}} but the growth rate is limited by the availability of each nutrient, .. math:: \mu_j = \min(P^{\op{C}}_j, \mu^{\max\op{N}}_j, \mu^{\max\op{P}}_j, \mu^{\max\op{Fe}}_j, \mu^{\max\op{Si}}_j) Each nutrient’s availability determines a maximum achievable growth rate. Its form depends on whether variable quotas are enabled for the nutrient. For instance for phosphorus, without P quota, .. math:: :label: eq_darwin_max_growth_p \mu^{\max\op{P}}_j = \frac{1}{R^{\op{P}:\op{C}}_j} V^{{\mathrm{P}}\max}_j \gamma^{\op{P}}_j f^{\op{up}}_j(T) ( 1 + r^{\op{resp}}_j ) and with P quota, .. math:: :label: eq_darwin_max_growth_p_noquota \mu^{\max\op{P}}_j = \frac{1}{R^{\op{P}:\op{C}}_j} u^{\mathrm{P}}_j ( 1 + r^{\op{resp}}_j ) where :math:`u^{\mathrm{P}}_j` is the carbon-specific uptake rate for phosphorus, .. math:: u^{\mathrm{P}}_j = V^{{\mathrm{P}}\max}_j \frac{\mathrm{PO}_4}{\mathrm{PO}_4 + k^{\op{PO4}}_j} {{\text{reg}}}^{Q{\mathrm{P}}}_j \cdot f^{{\text{up}}}_j(T) and the respiration rate is .. math:: r^{\op{resp}}_j = r^{\op{resp}\max}_j f^{\op{remin}}(T) \frac{c_j - c_j^{\min}}{c_j} Other elements work analogously, except that the maximum nitrogen uptake rate for the case without nitrogen quotas is more complex, .. math:: \mu^{\max\op{N}}_j = \frac{1}{R^{\op{P}:\op{C}}_j} u^{{\mathrm{N}}\max}_j ( 1 + r^{\op{resp}}_j ) where .. math:: u^{{\mathrm{N}}\max}_j = \max( u^{{\mathrm{NO3}}\max}_j, u^{{\mathrm{NO2}}\max}_j, u^{{\mathrm{NH4}}\max}_j ) with .. math:: u^{{\mathrm{N..}}\max}_j = V^{{\mathrm{N..}}\max}_j \gamma^{\op{N..}}_j f^{\op{up}}_j(T) Part of the excess carbon is exuded to become DOC, .. math:: E^{\op{C}}_j = (P^{\op{C}}_j - \mu_j) f^{\op{exude}}_j c_j and part stored as fat, .. math:: U^{\op{fat}}_j = (P^{\op{C}}_j - \mu_j) (1 - f^{\op{exude}}_j) c_j \;. The Chlorophyll synthesis rate is based on the growth rate (as before). .. csv-table:: Exudation parameters :delim: & :widths: 13,20,17,15,15,20 :class: longtable :header: Trait, Param, Symbol, Default, Units, Description :varlink:`FracExudeC` & :varlink:`a_FracExudeC` & :math:`f^{\op{exude}}_j` & 0.3 & & fraction of excess carbon exuded