.. include:: ../defs.hrst .. _Growth: Growth ^^^^^^ Without :varlink:`DARWIN_ALLOW_GEIDER`, the carbon-specific growth rate is .. math:: P^{\mathrm{C}}_j = P_{{\mathrm{C}},j}^{\max} \gamma^{\op{nut}}_j \gamma^{\op{light}}_j f^{{{\text{phy}}}}_j(T) \gamma_{\op{pCO2}} where .. math:: \gamma^{\op{light}}_j = (1 - \mathrm{e}^{-k^{\op{sat}}_{\op{PAR}j} I}) \cdot \mathrm{e}^{-k^{\op{inh}}_{\op{PAR}j} I} \cdot n^{\op{light}}_j and :math:`n^{\op{light}}_j` normalizes the maximum of :math:`\gamma^{\op{light}}_j` with respect to :math:`I` to unity. For :math:`\gamma^{\op{nut}}_j`, see :numref:`Uptake`, for :math:`f^{\op{phy}}_j(T)`, see :numref:`Temperature`. :math:`\gamma_{\op{pCO2}}` is currently set to 1 in the code. .. n^{\op{light}}_j = \frac{k^{\op{sat}}_{\op{PAR}j}+k^{\op{inh}}_{\op{PAR}j}} {k^{\op{sat}}_{\op{PAR}j}} \left( \frac{k^{\op{inh}}_{\op{PAR}j}}{k^{\op{sat}}_{\op{PAR}j} + k^{\op{inh}}_{\op{PAR}j}} \right)^{-k^{\op{inh}}_{\op{PAR}j}/k^{\op{sat}}_{\op{PAR}j}} With :varlink:`DARWIN_ALLOW_GEIDER`, .. math:: P^{\mathrm{C}}_j = P^{{\mathrm{C}}{\op{m}}}_j \left( 1 - \exp\left\{ -\frac{\gamma^{\op{QFe}}_j \langle\alpha I\rangle_j \op{Chl\text{:}C}_j }{ P^{{\mathrm{C}}{\op{m}}}_j } \right\} \right) \gamma^{{{\text{inhib}}}}_j \qquad\text{if } I_{\op{tot}}>I_{\min} where .. math:: \langle\alpha I\rangle_j = \sum_{l=1}^{\op{nlam}} \alpha^{\op{Chl}}_{j,l} I_l \quad\text{and}\quad I_{\op{tot}} = \sum_{l=1}^{\op{nlam}} I_l and :math:`I_l` is photosynthetically active radiation. The Chlorophyll a-specific initial slope of the photosynthesis-light curve is computed from the maximum quantum yield of carbon fixation and the coefficient of absorption by photosynthetically active pigments (see :numref:`Spectral`), .. math:: \alpha^{\op{Chl}}_{j,l} = \Phi_{\op{m}j} a^{\op{chl}}_{\op{ps}j,l} \;. Without the radtrans package, spectral PAR, :math:`I_l`, is replaced by total PAR and the spectral absorption coefficient by an average one, :varlink:`aphy_chl_ave`. The maximum growth rate is .. math:: P^{{\mathrm{C}}{\op{m}}}_j = P_{{\mathrm{C}},j}^{\max} \gamma^{\op{nut}}_j f^{{{\text{phy}}}}_j(T) \gamma_{\op{pCO2}} \;. The iron limitation term, :math:`\gamma^{\op{QFe}}_j`, is discussed in :numref:`Uptake`. With :varlink:`DARWIN_ALLOW_CHLQUOTA`, :math:`\op{Chl\text{:}C}_j` is computed from plankton Chlorophyll and carbon tracers. Without, .. math:: \op{Chl\text{:}C}_j = \op{Chl\text{:}C}_j^{\op{acclim}} where .. math:: :label: chl2cacclim \op{Chl\text{:}C}_j^{\op{acclim}} = \left[ \frac{\op{Chl\text{:}C}^{\max}_j} {1 + \op{Chl\text{:}C}^{\max}_j\langle\alpha I\rangle_j /(2P^{{\mathrm{C}}{\op{m}}}_j)} \right]_{\op{Chl\text{:}C}^{\min}_j}^{\op{Chl\text{:}C}^{\max}_j} If :math:`P^{{\mathrm{C}}{\op{m}}}_j=0`, we set :math:`\op{Chl\text{:}C}_j^{\op{acclim}}=\op{Chl\text{:}C}^{\min}_j`. With the readtrans package, .. math:: \op{Chl\text{:}C}^{\min}_j = \frac{\op{Chl\text{:}C}^{\max}_j} { 1 + 2000 \op{Chl\text{:}C}^{\max}_j \overline\alpha_j /(2 P^{\max}_{\op{C},j}) } \;, otherwise zero. Here, .. math:: \overline{\alpha}_j = \sum_l \Delta\lambda_l \alpha^{\op{Chl}}_{j,l} \Big/ \sum_l \Delta\lambda_l \;. Photo inhibition is parameterized as .. math:: \gamma^{{{\text{inhib}}}}_j = \begin{cases} c^{\op{inhib}}_j \cdot \op{EkoverE} & \text{if } \op{EkoverE} \le 1 \\ 1 & \text{otherwise} \end{cases} where .. math:: \op{EkoverE} = \frac{P^{{\mathrm{C}}{\op{m}}}_j/(\op{Chl\text{:}C}_j\cdot\overline{\alpha}_j)} {\langle\alpha I\rangle_j/\overline{\alpha}_j} \;. :numref:`tab_phys_pkgs_darwin_growth` summarized the parameters relevant for growth. .. csv-table:: Growth parameters :delim: & :widths: auto :class: longtable :header: Trait, Param, Symbol, Default, Units, Description :name: tab_phys_pkgs_darwin_growth :varlink:`ksatPAR` & :varlink:`a_ksatPAR` & :math:`k^{\op{sat}}_{\op{PAR}}` & 0.012 & m\ :sup:`2` s μEin\ :sup:`-1` & saturation coefficient for PAR :varlink:`kinhPAR` & :varlink:`a_kinhPAR` & :math:`k^{\op{inh}}_{\op{PAR}}` & 0.006 & m\ :sup:`2` s μEin\ :sup:`-1` & inhibition coefficient for PAR :varlink:`PCmax` & :varlink:`a `,\ :varlink:`b_PCmax` & :math:`P^{\op{max}}_{\op{C}j}` & (1/day) V\ :sup:`--0.15` & 1/s & maximum carbon-specific growth rate & :varlink:`PARmin` & :math:`I_{\min}` & 0.1 & μEin/m\ :sup:`2`/s & minimum light for photosynthesis :varlink:`mQyield` & :varlink:`a_mQyield` & :math:`\Phi_j` & 0.000075 & mmol C (μEin)\ :sup:`-1` & maximum quantum yield :varlink:`chl2cmax` & :varlink:`a_chl2cmax` & :math:`\op{Chl\text{:}C}^{\op{max}}_j` & 0.3 & mg Chl (mmol C)\ :sup:`-1` & maximum Chlorophyll-carbon ratio :varlink:`inhibGeider` & :varlink:`a_inhibGeider` & :math:`c^{\op{inhib}}_j` & 0.0 & & photo-inhibition coefficient for Geider growth :varlink:`aphy_chl_ps` & :varlink:`aphy_chl_ps_type` & :math:`a^{\op{chl}}_{\op{ps}j,l}` & read in & m\ :sup:`2` (mg Chl)\ :sup:`-1` & absorption by PS active pigments :varlink:`aphy_chl_ps` is assigned from :varlink:`aphy_chl_ps_type` via :varlink:`grp_aptype`. The type-specific spectra are read in from :varlink:`darwin_phytoAbsorbFile` and optionally scaled allometrically, see :ref:`allomSpectra`.