\(\newcommand{\p}[1]{\frac{\partial }{\partial #1}}\) \(\newcommand{\pp}[2]{\frac{\partial #1}{\partial #2}}\) \(\newcommand{\dd}[2]{\frac{d #1}{d #2}}\) \(\newcommand{\h}{\frac{1}{2}}\) \(\newcommand{\op}[1]{\operatorname{#1}}\)

8.7.3.18. Bacteria

To enable heterotrophic uptake for plankton type j, set bactType(j) to a non-zero value and set one of isAerobic(j) and isDenit(j) to 1. The allowed values and associated types are summarized in Table 8.55. Note that ammonia and nitrite oxidizers must be aerobic.

Table 8.55 Darwin bacteria types

bacttype

isAerobic

isDenit

Description

1

1

0

Aerobic particle-associated: POM \(\to\) inorganic, DOM

1

0

1

Denitrifying particle-associated: POM \(\to\) inorganic, DOM

2

1

0

Aerobic free-living: DOM \(\to\) inorganic

2

0

1

Denitrifying free-living: DOM \(\to\) inorganic

You may also set the corresponding group parameters, grp_bacttype, grp_aerobic and grp_denit.

To disable remineralization other than by bacteria, set the parameterized remineralization rates KDOC, … to zero, see Section 8.7.3.8. This is not done automatically.

Note that bacteria have fixed elemental ratios. For now, no elemental quotas may be turned on in DARWIN_OPTIONS.h. In the future, elemental quotas will be kept at fixed ratios if turned on.

8.7.3.18.1. Growth and energy sources

Bacterial growth is represented by a growth rate,

\[\partial_t{c}_j = \mu_j {c}_j \;,\]

which is computed from various limiting resources. Aerobic bacteria are limited by and take up oxygen,

\[\mu^{{\mathrm{O}}}_j = y^{\mathrm{O}_2}_j P^{\max}_{\mathrm{O}2} \mathrm{O}_2 \;,\]
\[U^{{\mathrm{O}}2}_j = \frac{1}{{y^{{\mathrm{O}}_2}_j}} \mu_j {c}_j \;,\]

denitrifiers nitrate,

\[\mu^{{\mathrm{O}}}_j = y^{\op{NO}_3}_j V^{\max}_{\op{DIN}} \dfrac{\op{NO}_3}{\op{NO}_3 + k^{\op{DIN}}} f^{\op{remin}}(T) \;,\]
\[U^{\op{NO3}}_j = \frac{1}{{y^{\op{NO}_3}_j}} \mu_j {c}_j \;.\]

The nitrogen is released as N2 which is not represented in the model.

8.7.3.18.2. Generic particle-associated

BactType 1 consume POC, PON, POP, POFe and produce DIN, NH4, PO4 and FeT and, by hydrolysis, DOC, DON, DOP, DOFe. The growth rate is limited by the presence of particulate organic matter and oxygen or nitrate, see above,

\[\mu_j = \min(\mu^{\op{PON}}_j, \mu^{\op{POC}}_j, \mu^{\op{POP}}_j, \mu^{\op{POFe}}_j, \mu^{{\mathrm{O}}}_j)\]
\[\mu^{\op{PON}}_j = y_j {P^{\op{max}}_{{\mathrm{C}},j}} \frac{\op{PON}}{\op{PON}+ k^{\op{PON}}_j} f^{\op{remin}}(T)\]
\[\mu^{\op{POC}}_j = y_j {P^{\op{max}}_{{\mathrm{C}},j}} \frac{\op{POC}}{\op{POC}+ k^{\op{POC}}_j} f^{\op{remin}}(T)\]
\[\mu^{\op{POP}}_j = y_j {P^{\op{max}}_{{\mathrm{C}},j}} \frac{\op{POP}}{\op{POP}+ k^{\op{POP}}_j} f^{\op{remin}}(T)\]
\[\mu^{\op{POFe}}_j = y_j {P^{\op{max}}_{{\mathrm{C}},j}} \frac{\op{POFe}}{\op{POFe}+ {k^{\op{POFe}}}_j} f^{\op{remin}}(T)\]

The update rates for organic matter are

\[U^{\op{POC}}_j = \frac{{\alpha^{\op{hydrol}}}}{y_j} \mu_j {c}_j\]
\[U^{\op{POX}}_j = U^{\op{POC}}_j R^{X{\mathrm{C}}}_j \qquad X={\mathrm{N}},{\mathrm{P}},\op{Fe}\]

Part of POM is hydrolized to DOM:

\[H^{\op{POC}}_j = \frac{{\alpha^{\op{hydrol}}}- 1}{y_j} \mu_j {c}_j\]
\[H^{\op{POX}}_j = H^{\op{POC}}_j R^{X:\mathrm{C}}_j \qquad X=\mathrm{N},\mathrm{P},\op{Fe}\]

Part is respired back to inorganics:

\[R^{\op{DIC}}_j = \left( \frac{1}{y_j} - 1 \right) \mu_j {c}_j\]
\[ \begin{align}\begin{aligned}R^{\op{NH4}}_j &= R^{\op{DIC}}_j R^{\mathrm{N:C}}_j\\R^{\op{PO4}}_j &= R^{\op{DIC}}_j R^{\mathrm{P:C}}_j\\R^{\op{FeT}}_j &= R^{\op{DIC}}_j R^{\mathrm{Fe:C}}_j \;.\end{aligned}\end{align} \]

8.7.3.18.3. Generic free-living

BactType 2 consume DOC, DON, DOP, DOFe and produce DIN, NH4, PO4 and FeT. The growth rate is limited by the presence of dissolved organic matter and oxygen or nitrogen,

\[\mu_j = \min(\mu^{\op{DON}}_j, \mu^{\op{DOC}}_j, \mu^{\op{DOP}}_j, \mu^{\op{DOFe}}_j, \mu^{{\mathrm{O}}}_j)\]
\[\mu^{\op{DON}}_j = y_j {P^{\op{max}}_{{\mathrm{C}},j}} \frac{\op{DON}}{\op{DON}+ k^{\op{DON}}_j} f^{\op{remin}}(T)\]
\[\mu^{\op{DOC}}_j = y_j {P^{\op{max}}_{{\mathrm{C}},j}} \frac{\op{DOC}}{\op{DOC}+ k^{\op{DOC}}_j} f^{\op{remin}}(T)\]
\[\mu^{\op{DOP}}_j = y_j {P^{\op{max}}_{{\mathrm{C}},j}} \frac{\op{DOP}}{\op{DOP}+ k^{\op{DOP}}_j} f^{\op{remin}}(T)\]
\[\mu^{\op{DOFe}}_j = y_j {P^{\op{max}}_{{\mathrm{C}},j}} \frac{\op{DOFe}}{\op{DOFe}+ {k^{\op{DOFe}}}_j} f^{\op{remin}}(T)\]

The uptake rates for organic matter are

\[U^{\op{DOC}}_j = \frac{1}{y_j} \mu_j {c}_j\]
\[U^{\op{DOX}}_j = U^{\op{DOC}}_j R^{X{\mathrm{C}}}_j \qquad X={\mathrm{N}},{\mathrm{P}},\op{Fe}\]

Part of it is respired back to inorganics:

\[R^{\op{DIC}}_j = \left( \frac{1}{y_j} - 1 \right) \mu_j {c}_j\]
\[ \begin{align}\begin{aligned}R^{\op{NH4}}_j &= R^{\op{DIC}}_j R^{\mathrm{N:C}}_j\\R^{\op{PO4}}_j &= R^{\op{DIC}}_j R^{\mathrm{P:C}}_j\\R^{\op{FeT}}_j &= R^{\op{DIC}}_j R^{\mathrm{Fe:C}}_j \;.\end{aligned}\end{align} \]

8.7.3.18.4. Bacteria parameters

Table 8.56 Bacteria parameters

Trait

Param

Symbol

Default

Units

Description

bactType

grp_bacttype

0

1: particle associated, 2: free living bacteria, 0: not bacteria

isAerobic

grp_aerobic

0

1: is aerobic, 0: not

isDenit

grp_denit

0

1: is dentrifying, 0: not

pcoefO2

\(P^{\max}_{\mathrm{O}2}\)

290.82 / 86400

s–1

max O2-specific O2 uptake rate for aerobic bacteria

pmaxDIN

\(V^{\max}_{\op{DIN}}\)

20/86400

mmol N mmol C–1 s–1

max C-specific DIN uptake rate for denitrifying bacteria

ksatDIN

\(k^{\op{DIN}}\)

0.01

mmol N m–3

half-saturation conc of dissolved inorganic nitrogen

alpha_hydrol

\(\alpha^{\op{hydrol}}\)

2.0

1

increase in POM needed due to hydrolysis

PCmax

a,b_PCmax

\(P^{\op{max}}_{\op{C},j}\)

(1/day) · V–0.15, see 1

s–1

maximum carbon-specific growth rate

yield

yod (aerobic) ynd (denit)

\(y_j\)

0.2 (aerobic) 0.16 (denit)

1

bacterial growth yield for all organic matter

yieldO2

yoe

\(y^{{\mathrm{O}}_2}_j\)

0.2/467*4/ (1-0.2)*106

mmol C / mmol O2

bacterial growth yield for oxygen

yieldNO3

yne

\(y^{\op{NO}_3}_j\)

0.16/467*5/ (1-0.16)*106

mmol C / mmol N

bacterial growth yield for nitrate

ksatPON

a_ksatPON

\(k^{\op{PON}}_j\)

1

mmol N m–3

half-saturation of PON for bacterial growth

ksatPOC

\(k^{\op{POC}}_j\)

see below

mmol C m–3

half-saturation of POC for bacterial growth

ksatPOP

\(k^{\op{POP}}_j\)

see below

mmol P m–3

half-saturation of POP for bacterial growth

ksatPOFe

\(k^{\op{POFe}}_j\)

see below

mmol Fe m–3

half-saturation of POFe for bacterial growth

ksatDON

a_ksatDON

\(k^{\op{DON}}_j\)

1

mmol N m–3

half-saturation of DON for bacterial growth

ksatDOC

\(k^{\op{DOC}}_j\)

see below

mmol C m–3

half-saturation of DOC for bacterial growth

ksatDOP

\(k^{\op{DOP}}_j\)

see below

mmol P m–3

half-saturation of DOP for bacterial growth

ksatDOFe

\(k^{\op{DOFe}}_j\)

see below

mmol Fe m–3

half-saturation of DOFe for bacterial growth

1

A more appropriate value for the maximum growth rate of bacteria is 5/day which was used in previous versions of the code.

The organic nitrogen half-saturation constant, ksatPON and ksatDON, are set from trait parameters. Others are computed from nitrogen ones using elemental ratios,

\[ \begin{align}\begin{aligned}k^{\op{POC}}_j &= \frac{1}{R^{\mathrm{N}:\mathrm{C}}_j} k^{\op{PON}}_j & k^{\op{DOC}}_j &= \frac{1}{R^{\mathrm{N}:\mathrm{C}}_j} k^{\op{DON}}_j\\k^{\op{POP}}_j &= \frac{R^{\mathrm{P}:\mathrm{C}}_j}{R^{\mathrm{N}:\mathrm{C}}_j} k^{\op{PON}}_j & k^{\op{DOP}}_j &= \frac{R^{\mathrm{P}:\mathrm{C}}_j}{R^{\mathrm{N}:\mathrm{C}}_j} k^{\op{DON}}_j\\k^{\op{POFe}}_j &= \frac{R^{\mathrm{Fe}:\mathrm{C}}_j}{R^{\mathrm{N}:\mathrm{C}}_j} k^{\op{PON}}_j & k^{\op{DOFe}}_j &= \frac{R^{\mathrm{Fe}:\mathrm{C}}_j}{R^{\mathrm{N}:\mathrm{C}}_j} k^{\op{DON}}_j\end{aligned}\end{align} \]