\(\newcommand{\p}[1]{\frac{\partial }{\partial #1}}\) \(\newcommand{\pp}[2]{\frac{\partial #1}{\partial #2}}\) \(\newcommand{\dd}[2]{\frac{d #1}{d #2}}\) \(\newcommand{\h}{\frac{1}{2}}\) \(\newcommand{\op}[1]{\operatorname{#1}}\)

8.7.3. DARWIN package

The darwin package models the dynamics of a flexible number of phyto- and zooplankton and bacteria types, and the nutrient cycles of carbon, nitrogen, phosphorus, iron and silica. The description of the ecosystem model is split over a number of pages:

Plankton and nutrients are represented by their concentration in the ocean, using the PTRACERS Package. The darwin package uses the following tracers (or a subset, depending on the configuration):

Name

Units

Description

DIC

mmol C m–3

concentration of dissolved inorganic carbon

NO3

mmol N m–3

concentration of nitrate

NO2

mmol N m–3

concentration of nitrite

NH4

mmol N m–3

concentration of ammonia

PO4

mmol P m–3

concentration of phosphate

FeT

mmol Fe m–3

concentration of total dissolved iron

SiO2

mmol Si m–3

concentration of inorganic silica

DOC

mmol C m–3

concentration of dissolved organic carbon

DON

mmol N m–3

concentration of dissolved organic nitrogen

DOP

mmol P m–3

concentration of dissolved organic phosphorus

DOFe

mmol Fe m–3

concentration of dissolved organic iron

POC

mmol C m–3

concentration of particulate organic carbon

PON

mmol N m–3

concentration of particulate organic nitrogen

POP

mmol P m–3

concentration of particulate organic phosphorus

POFe

mmol Fe m–3

concentration of particulate organic iron

POSi

mmol Si m–3

concentration of particulate organic silica

PIC

mmol C m–3

concentration of particulate inorganic carbon

ALK

meq m–3

alkalinity

O2

mmol O2 m–3

concentration of oxygen

CDOM

mmol C m–3

(mmol P m–3)

concentration of colored dissolved organic matter 1

cj

mmol C m–3

concentration of carbon in plankton type j

nj

mmol N m–3

concentration of nitrogen in plankton type j

pj

mmol P m–3

concentration of phosphorus in plankton type j

fej

mmol Fe m–3

concentration of iron in plankton type j

sij

mmol Si m–3

concentration of silica in plankton type j

Chlj

mg Chl a m–3

concentration of Chlorophyll-a in plankton type j

1

units of CDOM are mmol C m–3 if #define DARWIN_CDOM_UNITS_CARBON (default), mmol P m–3 otherwise

Phyto- and zooplankton are not distinguished except that certain source terms will not be active, dependening on whether a plankton type can engage in photosynthesis, grazing, etc. This makes it very simple to include, for instance, mixotrophy in the model.

8.7.3.23. Compiling and Running

8.7.3.23.1. Compiling

Include the word darwin in packages.conf in your code directory. This will automatically turn on gchem, ptracers and exf.

Set compile-time options for darwin in file DARWIN_OPTIONS.h (see table below).

Adjust the number of plankton types, functional groups, autotrophs, grazers, prey and optical types in DARWIN_SIZE.h.

You will also have to adjust the number of passive tracers in PTRACERS_SIZE.h. You can run tools/darwin/mkdarwintracers in your code directory (after adjusting DARWIN_OPTIONS.h and DARWIN_SIZE.h) to find out how many ptracers you will need and what they are.

In GCHEM_OPTIONS.h you need to define GCHEM_SEPARATE_FORCING.

In EXF_OPTIONS.h you may want to undef ALLOW_CLIMSST_RELAXATION and ALLOW_CLIMSSS_RELAXATION.

To use spectral light, compile the radtrans package, see Section 8.7.4.

Table 8.60 Darwin package CPP options

CPP option

description

DARWIN_ALLOW_NQUOTA

enable nitrogen quotas for all plankton

DARWIN_ALLOW_PQUOTA

enable phosphorus quotas for all plankton

DARWIN_ALLOW_FEQUOTA

enable iron quotas for all plankton

DARWIN_ALLOW_SIQUOTA

enable silica quotas for all plankton

DARWIN_ALLOW_CHLQUOTA

enable chlorophyll quotas for all phototrophs

DARWIN_ALLOW_CDOM

enable a dynamic CDOM tracer

DARWIN_CDOM_UNITS_CARBON

measure CDOM in units of mmol C/m3 and follow organic carbon instead of phosphorus

DARWIN_ALLOW_CSTORE

enable internal carbon store and exudation for all phototrophs

DARWIN_ALLOW_CSTORE_DIAGS

enable diagnostics for internal carbon store

DARWIN_ALLOW_CARBON

enable air-sea carbon exchange and ALK and O\(_2\) tracers

DARWIN_SOLVESAPHE

compile Munhoven “Solvesaphe” pH/pOC2 solver package

DARWIN_TOTALPHSCALE

consistently use the total pH scale for carbon chemistry coefficients

DARWIN_USE_PLOAD

take atmospheric pressure from coupled atmospheric model

DARWIN_ALLOW_RADI

enable RADI sediment model

DARWIN_ALLOW_DENIT

enable denitrification code

DARWIN_ALLOW_EXUDE

enable exudation of individual quotas

ALLOW_OLD_VIRTUALFLUX

enable old virtualflux code for DIC and ALK

DARWIN_NITRATE_FELIMIT

reduce nitrate uptake by iron limitation factor

DARWIN_BOTTOM_SINK

allow organic matter to sink into bottom (sedimentize)

DARWIN_NUTRIENT_RUNOFF

include code for reading nutrient runoff from files

DARWIN_AVPAR

compute average PAR in layer, assuming exponential decay (%)

DARWIN_ALLOW_GEIDER

enable GEIDER light code (required for radtrans)

DARWIN_GEIDER_RHO_SYNTH

use ρ instead of acclimated Chl:C for chlorophyll synthesis

DARWIN_CHL_INIT_LEGACY

initialize chlorophyll as in darwin2

DARWIN_SCATTER_CHL

scattering coefficients are per Chlorophyll

DARWIN_DIAG_IOP

make diagnostics for instrinsic optical properties available

DARWIN_GRAZING_SWITCH

enable quadratic grazing as in darwin2+quota

DARWIN_ALLOMETRIC_PALAT

compute palatability from size ratios

DARWIN_NOZOOTEMP

turn off grazing temperature dependence

DARWIN_NOTEMP

turn off all temperature dependence

DARWIN_TEMP_VERSION

select temperature version: 1, 2 or 3

DARWIN_TEMP_RANGE

restrict phytoplankton growth to a temperature range

DARWIN_MINFE

restrict maximum free iron (sic)

DARWIN_PART_SCAV

enable particle scavenging code

DARWIN_IRON_SED_SOURCE_VARIABLE

enable variable iron sediment source

DARWIN_ALLOW_HYDROTHERMAL_VENTS

include code for iron input from hydrothermal vents

DARWIN_DIAG_PERTYPE

enable per-type diagnostics PP####, GR####, GrGn####

DARWIN_DIAG_TENDENCIES

enable diagnostics for many tendency terms

DARWIN_DEBUG

turn on debugging output

DARWIN_ALLOW_CONS

compute and print global element totals

DARWIN_UNUSED

value for unused traits

The following options are used for random trait generation (as in darwin2):

CPP option

description

DARWIN_RANDOM_TRAITS

assign traits based on random numbers as in darwin2

DARWIN_TWO_SPECIES_SETUP

set traits for darwin2 2-species setup (requires DARWIN_RANDOM_TRAITS)

DARWIN_NINE_SPECIES_SETUP

set traits for darwin2 9-species setup (requires DARWIN_RANDOM_TRAITS)

DARWIN_ALLOW_DIAZ

enable diazotrophy when using DARWIN_RANDOM_TRAITS

Random trait generation is supported mainly for backwards compatibility.

8.7.3.23.2. Running

You will need to set useDARWIN=.TRUE. in data.gchem (and turn on gchem, ptracers, exf, etc. in data.pkg).

Runtime Parameters

Runtime parameters are set in data.darwin in these namelists:

Namelist

Description

DARWIN_FORCING_PARAMS

parameters related to forcing and initialization

DARWIN_INTERP_PARAMS

parameters for interpolation of forcing fields (only used if USE_EXF_INTERPOLATION is defined)

DARWIN_PARAMS

general parameters (not per-plankton traits)

DARWIN_CDOM_PARAMS

parameters for dynamic CDOM

DARWIN_RADTRANS_PARAMS

parameters for radiative transer

DARWIN_RANDOM_PARAMS

parameters for randomly generated traits (deprecated)

DARWIN_TRAIT_PARAMS

parameters for trait generation (allometric and functional groups)

Set initial values/files for the tracers in data.ptracers. You can generate a template by running tools/darwin/mkdarwintracers in your code directory (get help with the ‘-h’ option).

You may generate a minimal file data.diagnostics with all the darwin tracers by running tools/darwin/mkdiagnosticsdata in your input/run directory.

Forcing fields are read in using the exf package. File names and forcing parameters are given in namelist DARWIN_FORCING_PARAMS in data.darwin. For light, ice area and wind speed, the following alternative sources can be given:

Table 8.61 Namelist DARWIN_FORCING_PARAMS

Name

Default

Description

darwin_useQsw

.FALSE.

whether to use model shortwave radiation for light

darwin_useSEAICE

.FALSE.

whether to use ice area from the seaice package

darwin_useEXFwind

.FALSE.

whether to use wind speed from the exf package

The forcing fields are:

Table 8.62 Darwin forcing fields

Name

Default

Units

Description

iron

0.0

mmol Fe m–2 s–1

iron input through sea surface, will be multiplied by solubility alpfe

PAR

0.0

μEin m–2 s–1

Photosynthetically active radiation below sea surface; not used with the radtrans package

ice

0.0

m2/m2

fraction of surface covered by ice; used to reduce non-spectral light and for carbon and oxygen surface forcing; for spectral light, ice fraction has to be given in data.radtrans

wind

5.0

m/s

wind speed; used for carbon and oxygen surface forcing

pCO2

278E-6

atm

partial pressure of atmospheric CO2; used for carbon and oxygen surface forcing

ventHe3

0.0

mmol 3He m–2 s–1

Helium-3 flux from hydrothermal vents; used for iron input

DOCrunoff

0.0

mmol C m–2 s–1

surface flux of DOC from runoff

DONrunoff

0.0

mmol N m–2 s–1

surface flux of DON from runoff

DOPrunoff

0.0

mmol P m–2 s–1

surface flux of DOP from runoff

DINrunoff

0.0

mmol N m–2 s–1

surface flux of DIN from runoff

IPrunoff

0.0

mmol P m–2 s–1

surface flux of IP from runoff

DSirunoff

0.0

mmol Si m–2 s–1

surface flux of DSi from runoff

POCrunoff

0.0

mmol C m–2 s–1

surface flux of POC from runoff

PONrunoff

0.0

mmol N m–2 s–1

surface flux of PON from runoff

POPrunoff

0.0

mmol P m–2 s–1

surface flux of POP from runoff

DICrunoff

0.0

mmol C m–2 s–1

surface flux of DIC from runoff

Each forcing field has a set of parameters in DARWIN_FORCING_PARAMS. These work as in the exf package, see Table 8.12. For instance, for PAR they are:

Table 8.63 Namelist DARWIN_FORCING_PARAMS, cont’d

Name

Default

Description

PARfile

‘ ‘

filename; if left empty no file will be read; PARconst will be used instead

PARconst

0.0

constant that will be used if no file is read

PARperiod

0.0

interval in seconds between two records

PARRepCycle

repeatPeriod

repeat cycle in seconds; only available if useExfYearlyFields is .FALSE.

PARStartTime

UNSET_RL

time in seconds of first record from the beginning of the model integration or, if useExfYearlyFields, from the beginning of year; computed from PARstartdate* if not given

PARstartdate1

0

date/time of first record when using the cal package; format: YYYYMMDD; start year (YYYY), month (MM), day (YY)

PARstartdate2

0

format: HHMMSS; start hour (HH), minute (MM), second(SS)

PAR_exfremo_intercept

0.0

can be used to remove global mean

PAR_exfremo_slope

0.0

can be used to remove global trend

PARmask

‘c’

grid point for masking: ‘ ‘ = no masking; ‘c’ = centered mask; ‘w’ = western mask; ‘s’ = southern

darwin_inscal_PAR

1.0

optional rescaling of input fields to adjust units

The parameters darwin_inscal_«Name» can be used to convert units. Some examples are given in Table 8.64.

Table 8.64 Example unit conversions

Field

File units

Scaling factor

iron

mol Fe m–2 s–1

darwin_inscal_iron = 1000

kg Fe m–2

darwin_inscal_iron = 17906.7

PAR

Ein m–2 day–1

darwin_inscal_PAR = 11.574074074074

Nutrient runoff has some extra parameters:

Table 8.65 Namelist DARWIN_FORCING_PARAMS, cont’d

Name

Default

Units

Description

R_ALK_DIC_runoff

1.0218

meq / mmol C

ALK:DIC ratio in runoff

R_NO3_DIN_runoff

0.6531

mmol N / mmol N

NO3 fraction of DIN in runoff

R_NO2_DIN_runoff

0.0158

mmol N / mmol N

NO2 fraction of DIN in runoff

R_NH4_DIN_runoff

0.3311

mmol N / mmol N

NH4 fraction of DIN in runoff

R_DIP_IP_runoff

0.333

mmol P / mmol P

ratio of dissolved to total inorganic P in runoff

R_DFe_DIP_runoff

0.0003

mmol Fe / mmol P

Fe:P ratio for inorganic P in runoff

R_DOFe_DOP_runoff

0.0003

mmol Fe / mmol P

Fe:P ratio for dissolved organic matter in runoff

R_POFe_POP_runoff

0.0003

mmol Fe / mmol P

Fe:P ratio for particulate organic matter in runoff

These govern how the various tracers receive contributions from the runoff files:

Table 8.66 Runoff forcing-tracer associations

Tracer

Surface Forcing Field

DOC

DOCrunoff

DON

DONrunoff

DOP

DOPrunoff

NO3

DINrunoff * R_NO3_DIN_runoff

NO2

DINrunoff * R_NO2_DIN_runoff

NH4

DINrunoff * R_NH4_DIN_runoff

PO4

IPrunoff * R_DIP_IP_runoff

SiO2

DSirunoff

POC

POCrunoff

PON

PONrunoff

POP

POPrunoff

DIC

DICrunoff

ALK

DICrunoff * R_ALK_DIC_runoff

FeT

IPrunoff * R_DIP_IP_runoff * R_DFe_DIP_runoff

DOFe

DOPrunoff * R_DOFe_DOP_runoff

POFe

POPrunoff * R_POFe_POP_runoff

Interpolation parameters for all forcing fields are set in namelist DARWIN_INTERP_PARAMS. See the exf package for how to set them.

General parameters are set in namelist DARWIN_PARAMS:

Table 8.67 Namelist DARWIN_PARAMS

Name

Default

Units

Description

darwin_seed

0

seed for random number generator (for DARWIN_RANDOM_TRAITS)

darwin_strict_check

.FALSE.

stop instead of issuing warnings

iDEBUG

1

index in x dimension for debug prints

jDEBUG

1

index in y dimension for debug prints

kDEBUG

1

index in z dimension for debug prints

darwin_pickupSuff

pickupSuff

pickup suffix for darwin; set to ‘ ‘ to disable reading at PTRACERS_Iter0

darwin_linFSConserve

.FALSE.

correct non-conservation due to linear free surface (globally)

darwin_read_phos

.FALSE.

initial conditions for plankton biomass are in mmol P/m3

darwin_chlInitBalanced

.FALSE.

Initialize Chlorophyll to a balanced value following Geider

darwin_chlIter0

0

Iteration number when to initialize Chlorophyll

katten_w

4D-2

1/m

atten coefficient water

katten_chl

4D-2

m2/mg Chl

atten coefficient chl

parfrac

0.4

fraction Qsw that is PAR

parconv

1/0.2174

μEin/s/W

conversion from W/m2 to μEin/m2/s

tempnorm

0.3

set temperature function (was 1.0)

TempAeArr

-4000.0

K

slope for pseudo-Arrhenius (TEMP_VERSION 2)

TemprefArr

293.15

K

reference temp for pseudo-Arrhenius (TEMP_VERSION 2)

TempCoeffArr

0.5882

pre-factor for pseudo-Arrhenius (TEMP_VERSION 2)

reminTempAe

0.0438

1/K

temperature coefficient for remineralization (TEMP_VERSION 4)

mortTempAe

0.0438

1/K

temperature coefficient for linear mortality (TEMP_VERSION 4)

mort2TempAe

0.0438

1/K

temperature coefficient for quadr. mortality (TEMP_VERSION 4)

uptakeTempAe

0.0

1/K

temperature coefficient for uptake (TEMP_VERSION 4)

alpfe

0.04

solubility of Fe dust

scav

0.4/year

1/s

fixed iron scavenging rate

scav_tau

0.2

factor for converting Th scavenging rates to iron ones

scav_inter

0.079 / day

Le mg-e s-1

intercept of scavenging power law (e=escav)

scav_exp

0.58

exponent of scavenging power law

scav_POC_wgt

0.02173

g/mmol C

weight POC contributes to POM

scav_POSi_wgt

0.069

g/mmol Si

weight POSi contributes to POM

scav_PIC_wgt

0.100

g/mmol C

weight PIC contributes to POM

ligand_tot

1D-3

mol/m3

total ligand concentration

ligand_stab

2D5

m3/mol

ligand stability rate ratio

freefemax

0.4D-3

mol/m3

max concentration of free iron

depthfesed

-1.0

m

depth above which to add sediment source (was -1000)

fesedflux

1D-3 / day

mmol Fe /m2/s

fixed iron flux from sediment

fesedflux_pcm

0.68D-3

mmol Fe / mmol C

iron input per POC sinking into bottom for DARWIN_IRON_SED_SOURCE_VARIABLE

fesedflux_min

0.5D-3 / day

mmol Fe /s

min iron input rate subtracted from fesedflux_pcm*wc_sink*POC

R_CP_fesed

106

mmol C / mmol P

POC:POP conversion for DARWIN_IRON_SED_SOURCE_POP

depthFeVent

750

m

depth below which iron from hydrothermal vents is added

solFeVent

0.002

solubility of iron from hydrothermal vents

R_FeHe3_vent

4.5E8

mol Fe / mol 3He

Fe:3He ratio for hydrothermal vents

Knita

1/(0.5 days)

1/s

ammonia oxidation rate

Knitb

1/(10 days)

1/s

nitrite oxidation rate

PAR_oxi

10

μEin/m2/s

critical light level after which oxidation starts

Kdoc

1/(100 days)

1/s

DOC remineralization rate

Kdop

1/(100 days)

1/s

DON remineralization rate

Kdon

1/(100 days)

1/s

DOP remineralization rate

KdoFe

1/(100 days)

1/s

DOFe remineralization rate

KPOC

1/(50 days)

1/s

POC remineralization rate

KPOP

KPOC

1/s

POP remineralization rate

KPON

KPOC

1/s

PON remineralization rate

KPOFe

KPOC

1/s

POFe remineralization rate

KPOSi

1/(300 days)

1/s

POSi remineralization rate

wC_sink

10/day

m/s

sinking velocity for POC

wP_sink

wC_sink

m/s

sinking velocity for POP

wN_sink

wC_sink

m/s

sinking velocity for PON

wFe_sink

wC_sink

m/s

sinking velocity for POFe

wSi_sink

wC_sink

m/s

sinking velocity for POSi

wPIC_sink

15/day

m/s

sinking velocity for PIC

Kdissc

1/(300 days)

1/s

dissolution rate for PIC

R_OP

170

mmol O2 / mmol P

O:P ratio for respiration and consumption

R_OC

170/120.0

mmol O2 / mmol C

NOT USED

m3perkg

1 / 1024.5

m3/kg

constant for converting per kg to per m^3

surfSaltMinInit

4.0

ppt

limits for carbon solver input at initialization

surfSaltMaxInit

50.0

ppt

surfTempMinInit

-4.0

°C

surfTempMaxInit

39.0

°C

surfDICMinInit

10.0

mmol C m-3

surfDICMaxInit

4000.0

mmol C m-3

surfALKMinInit

10.0

meq m-3

surfALKMaxInit

4000.0

meq m-3

surfPO4MinInit

1D-10

mmol P m-3

surfPO4MaxInit

10.0

mmol P m-3

surfSiMinInit

1D-8

mmol Si m-3

surfSiMaxInit

500.0

mmol Si m-3

surfSaltMin

4.0

ppt

limits for carbon solver input during run

surfSaltMax

50.0

ppt

surfTempMin

-4.0

°C

surfTempMax

39.0

°C

surfDICMin

400.0

mmol C m-3

surfDICMax

4000.0

mmol C m-3

surfALKMin

400.0

meq m-3

surfALKMax

4000.0

meq m-3

surfPO4Min

1D-10

mmol P m-3

surfPO4Max

10.0

mmol P m-3

surfSiMin

1D-8

mmol Si m-3

surfSiMax

500.0

mmol Si m-3

diaz_ini_fac

1

reduce tracer concentrations by this factor on initialization

O2crit

6.0

mmol O2 m-3

critical oxygen for O2/NO3 remineralization

denit_NP

120.0

mmol N / mmol P

ratio of n to p in denitrification process

denit_NO3

104.0

mmol N / mmol P

ratio of NO3 uptake to phos remineralization in denitrification

NO3crit

1D-2

mmol N m-3

critical nitrate below which no denit (or remin) happens

PARmin

0.1

μEin/m2/s

minimum light for photosynthesis; for non-Geider: 1.0

aphy_chl_ave

0.02

m2/mg Chl

Chl-specific absorption coefficient

chl2nmax

3.00

mg Chl / mmol N

max Chl:N ratio for Chl synthesis following Moore 2002

synthcost

0.0

mmol C / mmol N

cost of biosynthesis

inhib_graz

1.0

(mmol C m-3)-1

inverse decay scale for grazing inhibition

inhib_graz_exp

0.0

exponent for grazing inhibition (0 to turn off inhibition)

hillnumUptake

1.0

exponent for limiting quota uptake in nutrient uptake

hillnumGraz

1.0

exponent for limiting quota uptake in grazing

hollexp

1.0

grazing exponential 1= “Holling 2”, 2= “Holling 3”

phygrazmin

120D-10

mmol C m-3

minimum total prey conc for grazing to occur

pmaxDIN

20/day

1/s

max DIN uptake rate for denitrifying bacteria

pcoefO2

290.82/day

m3/mmol O2/s

max O2-specific O2 uptake rate for aerobic bacteria

ksatDIN

0.01

mmol N m-3

half-saturation conc of dissolved inorganic nitrogen

alpha_hydrol

2.0

increase in POM needed due to hydrolysis

yod

0.2

organic matter yield of aerobic bacteria

yoe

yod/467*4/(1-yod)*106

energy yield of aerobic bacteria

ynd

0.16

organic matter yield of denitrifying bacteria

yne

ynd/467*5/(1-ynd)*106

energy yield of denitrifying bacteria

Table 8.68 Namelist DARWIN_CDOM_PARAMS

Name

Default

Units

Description

fracCDOM

2 / 100

fraction of remineralized POP contributing to CDOM

CDOMdegrd

1 / (200 days)

1/s

CDOM degradation rate

CDOMbleach

1 / (15 days)

1/s

CDOM bleaching rate

PARCDOM

20

μEin/m2/s

PAR where CDOM bleaching becomes maximal

R_NP_CDOM

16

mmol N / mmol P

CDOM N:P ratio (with #undef DARWIN_CDOM_UNITS_CARBON)

R_FeP_CDOM

1D-3

mmol Fe / mmol P

CDOM Fe:P ratio (with #undef DARWIN_CDOM_UNITS_CARBON)

R_CP_CDOM

120

mmol C / mmol P

CDOM C:P ratio (with #undef DARWIN_CDOM_UNITS_CARBON)

R_NC_CDOM

16/120

mmol N / mmol C

CDOM N:C ratio (with #define DARWIN_CDOM_UNITS_CARBON)

R_PC_CDOM

1/120

mmol P / mmol C

CDOM P:C ratio (with #define DARWIN_CDOM_UNITS_CARBON)

R_FeC_CDOM

1D-3/120

mmol Fe / mmol C

CDOM Fe:C ratio (with #define DARWIN_CDOM_UNITS_CARBON)

CDOMcoeff

100.0

m2 / mmol P

P-specific absorption coefficient of CDOM at \(\lambda_{\op{CDOM}}\)

100/120

m2 / mmol C

  • if #define DARWIN_CDOM_UNITS_CARBON

Table 8.69 Namelist DARWIN_RADTRANS_PARAMS

Name

Default

Units

Description

darwin_waterAbsorbFile

‘ ‘

filename for reading water absorption and scattering spectra

darwin_phytoAbsorbFile

‘ ‘

filename for reading plankton absorption and scattering spectra

darwin_particleAbsorbFile

‘ ‘

filename for reading particle absorption and scattering spectra

darwin_part_size_P

1D-15

mmol P/particle

conversion factor for particle absorption and scattering spectra

darwin_bbmin

0.0002

1/m

minimum backscattering ratio

darwin_bbw

0.5

backscattering ratio of water

darwin_lambda_aCDOM

450.0

nm

reference wavelength for CDOM absorption spectra

darwin_Sdom

0.014

1/nm

coefficient for CDOM absorption spectra

darwin_aCDOM_fac

0.2

factor for computing aCDOM from water+Chlorophyll absorption

darwin_rCDOM

0.0

mmol P/m3

recalcitrant CDOM concentration

0.0

mmol C/m3

  • if #define DARWIN_CDOM_UNITS_CARBON

darwin_RPOC

0.0

mmol C/m3

recalcitrant POC concentration

darwin_allomSpectra

.FALSE.

enable/disable allometric scaling of plankton absorption and scattering spectra

darwin_aCarCell

0.109D-9

mg C/cell

coefficient coefficient for scaling plankton spectra

darwin_bCarCell

0.991

coefficient coefficient for scaling plankton spectra

darwin_absorpSlope

-0.075

slope for scaled absorption spectra

darwin_bbbSlope

-1.458

slope for scaled backscattering ratio spectra

darwin_scatSwitchSizeLog

0

log(μm)

log of size for switching slopes

darwin_scatSlopeSmall

1.5

slope for small plankton

darwin_scatSlopeLarge

1.5

slope for large plankton

Traits

Traits are generated from the parameters in &DARWIN_TRAIT_PARAMS (see next section) but can be overridden in data.traits:

Table 8.70 Namelist DARWIN_TRAITS

Trait

Symbol

Units

Description

isPhoto

isPhoto\(_j\)

1: does photosynthesis, 0: not

bactType

bactType\(_j\)

1: particle associated, 2: free living bacteria, 0: not bacteria

isAerobic

isAerobic\(_j\)

1: is aerobic bacteria (also set bactType), 0: not

isDenit

isDenit\(_j\)

1: is dentrifying bacteria (also set (bactType), 0: not

hasSi

hasSi\(_j\)

1: uses silica (Diatom), 0: not

hasPIC

hasPIC\(_j\)

1: calcifying, 0: set R_PICPOC to zero

diazo

diazo\(_j\)

1: use molecular instead of mineral nitrogen, 0: not

useNH4

useNH4\(_j\)

1: can use ammonia, 0: not

useNO2

useNO2\(_j\)

1: can use nitrite, 0: not

useNO3

useNO3\(_j\)

1: can use nitrate, 0: not

combNO

combNO\(_j\)

1: combined nitrite/nitrate limitation, 0: not

isPrey

isPrey\(_j\)

1: can be grazed, 0: not

isPred

isPred\(_j\)

1: can graze, 0: not

tempMort

\(e^{\op{mort}}_j\)

1: mortality is temperature dependent, 0: turn dependence off

tempMort2

\(e^{\op{mort2}}_j\)

1: quadratic mortality is temperature dependent, 0: turn dependence off

tempGraz

\(e^{\op{graz}}_j\)

1: grazing is temperature dependent, 0: turn dependence off

Xmin

\(c^{\min}_j\)

mmol C m-3

minimum abundance for mortality, respiration and exudation

amminhib

\(\sigma_1\)

(mmol N m-3)-1

coefficient for NH4 inhibition of NO uptake

acclimtimescl

\(\tau^{\op{acclim}}\)

s-1

rate of chlorophyll acclimation

mort

\(m^{(1)}_j\)

s-1

linear mortality rate

mort2

\(m^{(2)}_j\)

(mmol C m-3)-1 s-1

quadratic mortality coefficient

ExportFracMort

\(f^{\op{exp}\op{mort}}_j\)

fraction of linear mortality to POM

ExportFracMort2

\(f^{\op{exp}\op{mort2}}_j\)

fraction of quadratic mortality to POM

ExportFracExude

\(f^{\op{exp}\op{exude}}_j\)

fraction of exudation to POM

phytoTempCoeff

\(c_j\)

see Table 8.57

phytoTempExp1

\(e_{1j}\)

exp(1/°C)

see Table 8.57

phytoTempAe

\(A^{\op{phy}}_{\op{e}j}\)

1/°C

see Table 8.57

phytoTempExp2

\(e_{2j}\)

see Table 8.57

phytoTempOptimum

\(T^{\op{opt}}_j\)

°C

see Table 8.57

phytoDecayPower

\(p_j\)

see Table 8.57

hetTempAe

\(A^{\op{het}}_{\op{e}j}\)

1/°C

see Table 8.57

hetTempExp2

\(e^{\op{het}}_{2j}\)

see Table 8.57

hetTempOptimum

\(T^{\op{opt het}}_j\)

°C

see Table 8.57

hetDecayPower

\(p^{\op{het}}_j\)

see Table 8.57

grazTempAe

\(A^{\op{graz}}_{\op{e}j}\)

1/°C

see Table 8.57

grazTempExp2

\(e^{\op{graz}}_{2j}\)

see Table 8.57

grazTempOptimum

\(T^{\op{opt graz}}_j\)

°C

see Table 8.57

grazDecayPower

\(p^{\op{graz}}_j\)

see Table 8.57

R_NC

\(R^{\op{N}:\op{C}}_j\)

mmol N (mmol C)-1

nitrogen-carbon ratio (not used with DARWIN_ALLOW_NQUOTA)

R_PC

\(R^{\op{P}:\op{C}}_j\)

mmol P (mmol C)-1

phosphorus-carbon ratio (not used with DARWIN_ALLOW_PQUOTA)

R_SiC

\(R^{\op{Si}:\op{C}}_j\)

mmol Si (mmol C)-1

silica-carbon ratio (not used with DARWIN_ALLOW_SIQUOTA)

R_FeC

\(R^{\op{Fe}:\op{C}}_j\)

mmol Fe (mmol C)-1

iron-carbon ratio (not used with DARWIN_ALLOW_FEQUOTA)

R_ChlC

\(R^{\op{chl}c}_j\)

mg Chl (mmol C)-1

chlorophyll-carbon ratio (not used with DARWIN_ALLOW_CHLQUOTA)

R_PICPOC

\(R^{\op{PICPOC}}_j\)

mmol PIC (mmol POC)-1

inorganic-organic carbon ratio

biosink

\(w^{\op{sink}}_j\)

m s-1

sinking velocity (positive downwards)

bioswim

\(w^{\op{swim}}_j\)

m s-1

upward swimming velocity (positive upwards)

respRate

\(r^{\op{resp}}_j\)

s-1

respiration rate

PCmax

\(P^{\op{max}}_{\op{C},j}\)

s-1

maximum carbon-specific growth rate

Qnmax

\(Q^{\op{N}\op{max}}_j\)

mmol N (mmol C)-1

maximum nitrogen quota (only with DARWIN_ALLOW_NQUOTA)

Qnmin

\(Q^{\op{N}\min}_j\)

mmol N (mmol C)-1

minimum nitrogen quota (only with DARWIN_ALLOW_NQUOTA)

Qpmax

\(Q^{\op{P}\op{max}}_j\)

mmol P (mmol C)-1

maximum phosphorus quota (only with DARWIN_ALLOW_PQUOTA)

Qpmin

\(Q^{\op{P}\min}_j\)

mmol P (mmol C)-1

minimum phosphorus quota (only with DARWIN_ALLOW_PQUOTA)

Qsimax

\(Q^{\op{Si}\op{max}}_j\)

mmol Si (mmol C)-1

maximum silica quota (only with DARWIN_ALLOW_SIQUOTA)

Qsimin

\(Q^{\op{Si}\min}_j\)

mmol Si (mmol C)-1

minimum silica quota (only with DARWIN_ALLOW_SIQUOTA)

Qfemax

\(Q^{\op{Fe}\op{max}}_j\)

mmol Fe (mmol C)-1

maximum iron quota (only with DARWIN_ALLOW_FEQUOTA)

Qfemin

\(Q^{\op{Fe}\min}_j\)

mmol Fe (mmol C)-1

minimum iron quota (only with DARWIN_ALLOW_FEQUOTA)

VmaxNH4

\(V^{\op{NH4}\op{max}}_j\)

mmol N (mmol C)-1 s-1

maximum ammonia uptake rate (only with DARWIN_ALLOW_NQUOTA)

VmaxNO2

\(V^{\op{NO2}\op{max}}_j\)

mmol N (mmol C)-1 s-1

maximum nitrite uptake rate (only with DARWIN_ALLOW_NQUOTA)

VmaxNO3

\(V^{\op{NO3}\op{max}}_j\)

mmol N (mmol C)-1 s-1

maximum nitrate uptake rate (only with DARWIN_ALLOW_NQUOTA)

VmaxN

\(V^{\op{N}\op{max}}_j\)

mmol N (mmol C)-1 s-1

maximum nitrogen uptake rate for diazotrophs (only with DARWIN_ALLOW_NQUOTA)

VmaxPO4

\(V^{\op{PO4}\op{max}}_j\)

mmol P (mmol C)-1 s-1

maximum phosphate uptake rate (only with DARWIN_ALLOW_PQUOTA)

VmaxSiO2

\(V^{\op{SiO2}\op{max}}_j\)

mmol Si (mmol C)-1 s-1

maximum silica uptake rate (only with DARWIN_ALLOW_SIQUOTA)

VmaxFeT

\(V^{\op{Fe}\op{max}}_j\)

mmol Fe (mmol C)-1 s-1

maximum iron uptake rate (only with DARWIN_ALLOW_FEQUOTA)

ksatNH4

\(k^{\op{NH4}}_j\)

mmol N m-3

half-saturation conc. for ammonia uptake/limitation

ksatNO2

\(k^{\op{NO2}}_j\)

mmol N m-3

half-saturation conc. for nitrite uptake/limitation

ksatNO3

\(k^{\op{NO3}}_ji\)

mmol N m-3

half-saturation conc. for nitrate uptake/limitation

ksatPO4

\(k^{\op{PO4}}_j\)

mmol P m-3

half-saturation conc. for phosphate uptake/limitation

ksatSiO2

\(k^{\op{SiO2}}_j\)

mmol Si m-3

half-saturation conc. for silica uptake/limitation

ksatFeT

\(k^{\op{Fe}}_j\)

mmol Fe m-3

half-saturation conc. for iron uptake/limitation

kexcc

\(\kappa^{\op{exc}}_{\op{C} j}\)

s-1

exudation rate for carbon

kexcn

\(\kappa^{\op{exc}}_{\op{N} j}\)

s-1

exudation rate for nitrogen

kexcp

\(\kappa^{\op{exc}}_{\op{P} j}\)

s-1

exudation rate for phosphorus

kexcsi

\(\kappa^{\op{exc}}_{\op{Si} j}\)

s-1

exudation rate for silica

kexcfe

\(\kappa^{\op{exc}}_{\op{Fe} j}\)

s-1

exudation rate for iron

inhibGeider

\(c^{\op{inhib}}_j\)

photo-inhibition coefficient for Geider growth

ksatPAR

\(k^{\op{sat}}_{\op{PAR}}\)

(μEin m-2 s-1)-1

saturation coefficient for PAR (w/o GEIDER)

kinhPAR

\(k^{\op{inh}}_{\op{PAR}}\)

(μEin m-2 s-1)-1

inhibition coefficient for PAR (w/o GEIDER)

mQyield

\(\Phi_j\)

mmol C (μEin)-1

maximum quantum yield

chl2cmax

\(\op{Chl\text{:}C}^{\op{max}}_j\)

mg Chl (mmol C)-1

maximum Chlorophyll-carbon ratio

grazemax

\(g^{\op{max}}_z\)

s-1

maximum grazing rate

kgrazesat

\(k^{\op{graz}}_z\)

mmol C m-3

grazing half-saturation concentration

yield

\({Y_j}\)

bacterial growth yield for all organic matter

yieldO2

\({Y^{{\mathrm{O}}_2}_j}\)

bacterial growth yield for oxygen

yieldNO3

\({Y^{\op{NO}_3}_j}\)

bacterial growth yield for nitrate

ksatPON

\({k^{\op{PON}}}\)

mmol N m-3

half-saturation of PON for bacterial growth

ksatPOC

\({k^{\op{POC}}}\)

mmol C m-3

half-saturation of POC for bacterial growth

ksatPOP

\({k^{\op{POP}}}\)

mmol P m-3

half-saturation of POP for bacterial growth

ksatPOFe

\({k^{\op{POFe}}}\)

mmol Fe m-3

half-saturation of POFe for bacterial growth

ksatDON

\({k^{\op{DON}}}\)

mmol N m-3

half-saturation of DON for bacterial growth

ksatDOC

\({k^{\op{DOC}}}\)

mmol C m-3

half-saturation of DOC for bacterial growth

ksatDOP

\({k^{\op{DOP}}}\)

mmol P m-3

half-saturation of DOP for bacterial growth

ksatDOFe

\({k^{\op{DOFe}}}\)

mmol Fe m-3

half-saturation of DOFe for bacterial growth

Table 8.71 Trait matrices for grazing; indices (prey, pred)

Trait

Symbol

Units

Description

palat

\(p_{j,z}\)

palatability matrix

asseff

\(a_{j,z}\)

assimilation efficiency matrix

ExportFracPreyPred

\(f^{\op{exp}\op{graz}}_{j,z}\)

fraction of unassimilated prey becoming particulate organic matter

Table 8.72 Namelist DARWIN_RADTRANS_TRAITS; indices (plankton, waveband)

Trait

Symbol

Units

Description

aphy_chl

\(a^{\op{chl}}_{\op{phy}}\)

m2 (mg Chl)-1

phytoplankton Chl-specific absorption coefficient

aphy_chl_ps

\(a^{\op{chl}}_{\op{ps}}\)

m2 (mg Chl)-1

part of aphy_chl that is used in photosynthesis

aphy_mgC

\(a^{\op{mgC}}_{\op{phy}}\)

m2 (mg C)-1

plankton carbon-specific absorption coefficient

bphy_mgC

\(b^{\op{mgC}}_{\op{phy}}\)

m2 (mg C)-1

carbon-specific total scattering coefficient

bbphy_mgC

\(b^{\op{mgC}}_{\op{b}\op{phy}}\)

m2 (mg C)-1

carbon-specific backscattering coefficient

The dependent trait alphachl(plankton,waveband) is computed from the other traits (radtrans or not).

Allometric trait generation

Plankton types are organized into functional groups. grp_nplank(g) sets the number of types in group g. Traits may be set the same for all types in a group, e.g., grp_diazo(g), or based on allometric scaling relations,

\[\mathrm{trait}_j = a_g \cdot V_j^{b_g}\]

with per-group scaling coefficients \(a_g\) and \(b_g\).

The volumes \(V_j\) of all types can be set in four ways (in order or decreasing precedence),

\[\begin{split}V_j = \begin{cases} \op{grp\_biovol(i,g)} & \\ V_{\log}(\op{grp\_biovolind(i,g)}) \\ V_{\log}(\op{logvol0ind(g)}+i-1) \\ V_{0 g} f_g^{i-1} \end{cases}\end{split}\]

where \(i\) is the index of type \(j\) within the functional group. \(V_{\log}\) is a series of volumes, evenly spaced in log space and defined by parameters \(B=\op{logvolbase}\) and \(I=\op{logvolinc}\),

\[V_{\log} = 10^B, 10^{B+I}, 10^{B+2I}, \dots\]

and \(V_{0 g}=\op{biovol0(g)}\) and \(f_g=\op{biovolfac(g)}\).

The scaling coefficients are read from namelist &darwin_trait_params in data.darwin. The following table shows the correspondence between traits and trait parameters. Where \(b\) is not given, it is set to 0, i.e., all types in the group share the same trait value. For some trait parameters x, a divisor may be specified in x_denom. This is particularly useful for specifying a rate in ‘per-day’ units, i.e., x_denom=86400.

Table 8.73 Namelist DARWIN_TRAIT_PARAMS

Trait

a

Default

b

Default

isPhoto

grp_photo

1

bactType

grp_bacttype

0

isAerobic

grp_aerobic

0

isDenit

grp_denit

0

isPred

grp_pred

0

isPrey

grp_prey

1

hasSi

grp_hasSi

0

hasPIC

grp_hasPIC

0

diazo

grp_diazo

0

useNH4

grp_useNH4

1

useNO2

grp_useNO2

1

useNO3

grp_useNO3

1

combNO

grp_combNO

1

aptype

grp_aptype

0

tempMort

grp_tempMort

1

tempMort2

grp_tempMort2

1

tempGraz

grp_tempGraz

1

Xmin

a_Xmin

0

R_NC

a_R_NC

16/120

R_PC

a_R_PC

1/120

R_SiC

a_R_SiC

0

R_FeC

a_R_FeC

1D-3/120

R_ChlC

a_R_ChlC

16/120

R_PICPOC

a_R_PICPOC

0.8

ExportFracMort

a_ExportFracMort

0.5

ExportFracMort2

a_ExportFracMort2

0.5

ExportFracExude

a_ExportFracExude

UNINIT

mort

a_mort

0.02 / day

mort2

a_mort2

0

phytoTempCoeff

a_phytoTempCoeff

1/3

phytoTempExp1

a_phytoTempExp1

1.04

phytoTempAe

a_phytoTempAe

0.0438

phytoTempExp2

a_phytoTempExp2

0.001

phytoTempOptimum

a_phytoTempOptimum

2

phytoDecayPower

a_phytoDecayPower

4

hetTempAe

a_hetTempAe

0.0438

hetTempExp2

a_hetTempExp2

0.001

hetTempOptimum

a_hetTempOptimum

2

hetDecayPower

a_hetDecayPower

4

grazTempAe

a_grazTempAe

0.0438

grazTempExp2

a_grazTempExp2

0.001

grazTempOptimum

a_grazTempOptimum

2

grazDecayPower

a_grazDecayPower

4

mQyield

a_mQyield

75D-6

chl2cmax

a_chl2cmax

.3

inhibGeider

a_inhibGeider

0

ksatPAR

a_ksatPAR

0.012

kinhPAR

a_kinhPAR

6D-3

amminhib

a_amminhib

4.6

acclimtimescl

a_acclimtimescl

1/(20 days)

a_acclimtimescl_denom

1

ksatPON

a_ksatPON

1

ksatDON

a_ksatDON

1

grazemax

a_grazemax

21.9 / day

b_grazemax

-0.16

a_grazemax_denom

1

kgrazesat

a_kgrazesat

1.00

b_kgrazesat

0.00

biosink

a_biosink

0.28D-1 / day

b_biosink

0.39

a_biosink_denom

1

bioswim

a_bioswim

0.00 / day

b_bioswim

0.18

a_bioswim_denom

1

palat

a_ppSig

1

see note 2

palat

a_ppOpt

1024

b_ppOpt

0.00

palat

palat_min

0

PCmax

a_PCmax

1.00 / day

b_PCmax

-0.15

a_PCmax_denom

1

qcarbon

a_qcarbon

1.80D-11

b_qcarbon

0.94

respRate

a_respRate_c

0.00

b_respRate_c

0.93

a_respRate_c_denom

1

see note 3

kexcc

a_kexcC

0.00

b_kexcC

-0.33

vmaxNO3

a_vmaxNO3

0.51 / day

b_vmaxNO3

-0.27

a_vmaxNO3_denom

1

ksatNO3

a_ksatNO3

0.17

b_ksatNO3

0.27

Qnmin

a_Qnmin

0.07

b_Qnmin

-0.17

Qnmax

a_Qnmax

0.25

b_Qnmax

-0.13

kexcn

a_kexcN

0.00

b_kexcN

-0.33

vmaxNO2

a_vmaxNO2

0.51 / day

b_vmaxNO2

-0.27

a_vmaxNO2_denom

1

ksatNO2

a_ksatNO2

0.17

b_ksatNO2

0.27

a_ksatNO2fac

1

used for eff.ksat

vmaxNH4

a_vmaxNH4

0.26 / day

b_vmaxNH4

-0.27

a_vmaxNH4_denom

1

ksatNH4

a_ksatNH4

0.85D-1

b_ksatNH4

0.27

a_ksatNH4fac

0.5

used for eff.ksat

vmaxN

a_vmaxN

1.28 / day

b_vmaxN

-0.27

a_vmaxN_denom

1

vmaxPO4

a_vmaxPO4

0.77D-1 / day

b_vmaxPO4

-0.27

a_vmaxPO4_denom

1

ksatPO4

a_ksatPO4

0.26D-1

b_ksatPO4

0.27

Qpmin

a_Qpmin

2.00D-3

b_Qpmin

0.00

Qpmax

a_Qpmax

0.01

b_Qpmax

0.00

kexcp

a_kexcP

0.24D-1 / day

b_kexcP

-0.33

vmaxSiO2

a_vmaxSiO2

0.77D-1 / day

b_vmaxSiO2

-0.27

a_vmaxSiO2_denom

1

ksatSiO2

a_ksatSiO2

0.24D-1

b_ksatSiO2

0.27

Qsimin

a_Qsimin

2.00D-3

b_Qsimin

0.00

Qsimax

a_Qsimax

4.00D-3

b_Qsimax

0.00

kexcsi

a_kexcSi

0.00 / day

b_kexcSi

0.00

vmaxFeT

a_vmaxFeT

14D-6 / day

b_vmaxFeT

-0.27

a_vmaxFeT_denom

1

ksatFeT

a_ksatFeT

80D-6

b_ksatFeT

0.27

Qfemin

a_Qfemin

1.50D-6

b_Qfemin

0.00

Qfemax

a_Qfemax

80D-6

b_Qfemax

0.00

kexcfe

a_kexcFe

0.00 / day

b_kexcFe

0.00

ExportFracPreyPred

grp_ExportFracPreyPred

0.5

(nGroup \(\times\) nGroup)

asseff

grp_ass_eff

0.7

(nGroup \(\times\) nGroup)

aphy_chl

aphy_chl_type

read

via grp_aptype

aphy_chl_ps

aphy_chl_ps_type

read

via grp_aptype

aphy_mgC

aphy_mgC_type

read

via grp_aptype

bphy_mgC

bphy_mgC_type

read

via grp_aptype

bbphy_mgC

bbphy_mgC_type

read

via grp_aptype

2

Palatabilities are initialized to zero and have to be set in data.traits unless DARWIN_ALLOMETRIC_PALAT is defined in which case they are computed from pp_opt, pp_sig and palat_min based on predator and prey sizes, see Section 8.7.3.17.

3

The respiration rate follows a different scaling law from other traits. It scales in terms of cellular carbon content, see Section 8.7.3.14.

8.7.3.24. Diagnostics

Table 8.74 Darwin package diagnostic fields

Name

Code

Units

Description

plankC

SMR_____MR

mmol C /m3

Total plankton carbon biomass

Chl

SMR_____MR

mg Chl a /m3

Total Chlorophyll a

PP

SMRP____MR

mmol C /m3/s

Primary Production

Nfix

SMRP____MR

mmol N /m3/s

N fixation

Denit

SMRP____MR

mmol N /m3/s

Denitrification

DenitN

SMRP____MR

mmol N /m3/s

Nitrogen loss due to denitrification

EXU

SM_P____MR

mmol C /m3/s

Carbon exudation

BioSyn

SM_P____MR

mmol C /m3/s

Biosynthesis rate

DmdN

SM_P____MR

mmol C /m3/s

Carbon demand from N limit

DmdP

SM_P____MR

mmol C /m3/s

Carbon demand from P limit

DmdFe

SM_P____MR

mmol C /m3/s

Carbon demand from Fe limit

DmdSi

SM_P____MR

mmol C /m3/s

Carbon demand from Si limit

Dmdmin

SM_P____MR

mmol C /m3/s

Minimum carbon demand

PAR###

SMRP____MR

µEin/m2/s

PAR waveband ###

PARF###

SM_P____LR

µEin/m2/s

PAR at W point, waveband ###

a###

SMRP____MR

1/m

total absorption for waveband ###

bt###

SMRP____MR

1/m

total scattering for waveband ###

bb###

SMRP____MR

1/m

total backscattering for waveband ###

aplk###

SMRP____MR

1/m

absorption by plankton for waveband ###

btplk###

SMRP____MR

1/m

scattering by plankton for waveband ###

bbplk###

SMRP____MR

1/m

backscattering by plankton for waveband ###

aprt###

SMRP____MR

1/m

absorption by particles for waveband ###

btprt###

SMRP____MR

1/m

scattering by particles for waveband ###

bbprt###

SMRP____MR

1/m

backscattering by particles for waveband ###

aCDOM###

SMRP____MR

1/m

absorption by CDOM for waveband ###

atten

SMRP____MR

1

attenuation in layer

PARF

SM_P____LR

µEin/m2/s

PAR at top of layer

PAR

SMRP____MR

µEin/m2/s

total PAR at layer center

C_DIN

SMRP____MR

mmol N /m3/s

consumption of DIN: \(\sum_j(U^{\op{NO3}}_j+U^{\op{NO2}}_j+U^{\op{NH4}}_j)\)

C_NO3

SMRP____MR

mmol N /m3/s

consumption of NO3: \(\sum_j U^{\op{NO3}}_j\)

C_NO2

SMRP____MR

mmol N /m3/s

consumption of NO2: \(\sum_j U^{\op{NO2}}_j\)

C_NH4

SMRP____MR

mmol N /m3/s

consumption of NH4: \(\sum_j U^{\op{NH4}}_j\)

C_PO4

SMRP____MR

mmol P /m3/s

consumption of PO4: \(\sum_j U^{\op{PO4}}_j\)

C_Si

SMRP____MR

mmol Si /m3/s

consumption of Si: \(\sum _j U^{\op{SiO2}}_j\)

C_Fe

SMRP____MR

mmol Fe /m3/s

consumption of Fe: \(\sum_j U^{\op{Fe}}_j\)

S_DIN

SMR_____MR

mmol N /m3/s

non-transport source of DIN: \(r_{\op{DON}}\op{DON}+[r_{\op{PON}}\op{PON}]-D_{\op{NH4}}-D_{\op{NO3}}\)

S_NO3

SMR_____MR

mmol N /m3/s

non-transport source of NO3

S_NO2

SMR_____MR

mmol N /m3/s

non-transport source of NO2

S_NH4

SMR_____MR

mmol N /m3/s

non-transport source of NH4

S_PO4

SMR_____MR

mmol P /m3/s

non-transport source of PO4: \(r_{\op{DOP}}\op{DOP}+[r_{\op{POP}}\op{POP}]\)

S_Si

SMR_____MR

mmol Si /m3/s

non-transport source of Si: \(r_{\op{POSi}}\op{POSi}\)

S_Fe

SMR_____MR

mmol Fe /m3/s

non-transport source of Fe: \(r_{\op{DOFe}}\op{DOFe}+[r_{\op{POFe}}\op{POFe}]+S_{\op{Fe}}\)

gDAR##

SMR_____MR

[TRAC##]/s

ptracer ## tendency from DARWIN 4

gECO##

SMR_____MR

[TRAC##]/s

ptracer ## tendency from DARWIN w/o sink/swim 4

PP####

SMRP____MR

mmol C /m3/s

Primary Production plankton ####

PC####

SMRP____MR

1/s

Carbon-specific phototrophic growth rate plankton ####

HP####

SMRP____MR

mmol C /m3/s

Heterotrophic production plankton ####

HC####

SMRP____MR

1/s

Carbon-specific heterotrophic growth rate plankton ####

GR####

SMRP____MR

mmol C /m3/s

Grazing loss of plankton ####

GrGn####

SMRP____MR

mmol C /m3/s

Grazing gain of plankton ####

GrGC####

SMRP____MR

1/s

Carbon-specific grazing rate plankton ####

EXU####

SMRP____MR

mmol C /m3/s

Exudation plankton ####

BS####

SMRP____MR

mmol C /m3/s

Biosynthesis rate plankton ####

DN####

SMRP____MR

mmol C /m3/s

Carbon demand from N limit plankton ####

DP####

SMRP____MR

mmol C /m3/s

Carbon demand from P limit plankton ####

DFe####

SMRP____MR

mmol C /m3/s

Carbon demand from Fe limit plankton ####

DSi####

SMRP____MR

mmol C /m3/s

Carbon demand from Si limit plankton ####

Dmin####

SMRP____MR

mmol C /m3/s

Minimum carbon demand plankton ####

sfcSolFe

SM_P____L1

mmol Fe /m2/s

Soluble iron input at sea surface

scvLosFe

SMRP____MR

mmol Fe /m3/s

Iron loss from scavenging

scavRate

SMRP____MR

1/s

Iron scavenging rate

sedFe

SMRP____MR

mmol Fe /m3/s

Iron input from sediment

freeFeLs

SMRP____MR

mmol Fe /m3/s

Iron loss due to free iron limit

sedFlxFe

SM_P____U1

mmol Fe /m2/s

Iron sediment flux

gDICEpr

SM______L1

mmol C /m3/s

Tendency of DIC due to E/P/runoff

gNO3Epr

SM______L1

mmol N /m3/s

Tendency of DIC due to E/P/runoff

gNO2Epr

SM______L1

mmol N /m3/s

Tendency of DIC due to E/P/runoff

gNH4Epr

SM______L1

mmol N /m3/s

Tendency of DIC due to E/P/runoff

gPO4Epr

SM______L1

mmol P /m3/s

Tendency of PO4 due to E/P/runoff

gFeTEpr

SM______L1

mmol Fe /m3/s

Tendency of FeT due to E/P/runoff

gSiO2Epr

SM______L1

mmol Si /m3/s

Tendency of SiO2 due to E/P/runoff

gALKEpr

SM______L1

meq/m3/s

Tendency of ALK due to E/P/runoff

gO2Epr

SM______L1

mmol O2 /m3/s

Tendency of O2 due to E/P/runoff

surfPAR

SM_P____L1

µEin/m2/s

PAR forcing at surface

surfiron

SM_P____L1

mmol Fe /m2/s

iron forcing at surface

DARice

SM_P____L1

m2/m2

ice area fraction

DARwind

SM_P____L1

m/s

wind speed used for carbon exchange

surfpCO2

SM_P____L1

mol/mol

atmospheric surface pCO2

4(1,2)

does not include free iron adjustment for FeT tracer

Diagnostics related to carbon chemistry are listed in Section 8.7.3.12.3.

Also of interest are the following diagnostics from the ptracers and gchem packages:

Name

Code

Units

Description

Tp_g##

SMR_____MR

[TRAC##]/s

ptracer ## total transport tendency (before gchem_forcing_sep)

TRAC##

SMR_____MR

[TRAC##]

ptracer ## concentration before transport

GC_Tr##

SMR_____MR

[TRAC##]

ptracer ## concentration before GCHEM

The ptracer number ## here and in gDAR## is the one defined in the ptracers package, see Section 8.3.3.4 for value larger than 99.

8.7.3.25. Call Tree

the_model_main
  initialise_fixed
    packages_readparms
      gchem_readparms
        darwin_readparms
          darwin_exf_readparms
          darwin_read_params
          darwin_read_traitparams
        gchem_tr_register
          darwin_tr_register
    packages_init_fixed
      gchem_init_fixed
        darwin_init_fixed
          darwin_exf_init_fixed
          darwin_diagnostics_init
          darwin_random_init
          darwin_generate_random
            darwin_random
            darwin_random_normal
          darwin_generate_allometric
          darwin_read_traits
    packages_check
      gchem_check
        darwin_check
  the_main_loop
    initialise_varia
      packages_init_variables
        gchem_init_vari
          darwin_init_varia
            darwin_exf_init_varia
            darwin_read_pickup
            darwin_init_chl
              darwin_light
                darwin_insol
              darwin_light_radtrans
            darwin_surfforcing_init
              darwin_coeffs_surf
              darwin_coeffs_deep
              darwin_carbon_coeffs
              ahini_for_at
              calc_pco2_solvesaphe
                solve_at_general
                  anw_infsup
                  equation_at
                solve_at_general_sec
                  anw_infsup
                  equation_at
                solve_at_fast
                  equation_at
              darwin_calc_pco2_approx
      do_the_model_io
        gchem_output
          darwin_diags
    main_do_loop
      forward_step
        load_fields_driver
          gchem_fields_load
            darwin_fields_load
              darwin_exf_load
              darwin_monitor
        gchem_cons
          darwin_cons
        gchem_forcing_sep
          darwin_conserve_surface
          darwin_cons
          darwin_cons_reset
          darwin_nut_supply
          darwin_forcing
            darwin_light_radtrans
            darwin_light...
            darwin_surfforcing
              darwin_coeffs_surf
              darwin_coeffs_deep
              darwin_carbon_coeffs
              calc_pco2_solvesaphe...
              darwin_calc_pco2_approx
            darwin_add_surfforc
            darwin_fe_chem
            darwin_tempfunc
            darwin_plankton
            darwin_sinking
          darwin_atmos
        do_the_model_io...
        do_write_pickup
          packages_write_pickup
            gchem_write_pickup
              darwin_write_pickup