\(\newcommand{\p}[1]{\frac{\partial }{\partial #1}}\) \(\newcommand{\pp}[2]{\frac{\partial #1}{\partial #2}}\) \(\newcommand{\dd}[2]{\frac{d #1}{d #2}}\) \(\newcommand{\h}{\frac{1}{2}}\) \(\newcommand{\op}[1]{\operatorname{#1}}\)

8.7.3.17. Grazing

Grazing loss of plankton \(j\):

\[G_j = \sum_{z\in\op{pred}} G_{j,z}\]

where

\[G_{j,z} = g^{\max}_z \frac{({p}_{j,z} {c}_j)^s}{A_z} \frac{p_z^h}{p_z^h + {k^{{{\text{graz}}}}_z}^h} (1 - {\mathrm{e}}^{-i_{{{\text{graz}}}} p_z})^{e_{\op{inhib}}} f^{{{\text{graz}}}}_z(T)^{e^{\op{graz}}_j} {c}_z\]

with

\[A_z = \biggl[ \sum_j ({p}_{j,z} {c}_j)^s \biggr]_{\ge c^{\min}_{\op{graz}}}\]
\[p_z = \biggl[ \sum_j {p}_{j,z} {c}_j - c^{\min}_{\op{graz}} \biggr]_{\ge 0}\]

\(s\) is 1 for non-switching and 2 for switching grazers (#define DARWIN_GRAZING_SWITCH). The exponent \(h\) defaults to 1.

Note: For non-switching grazers (\(s=1\)), Ben has an additional factor

\[\frac{S^{[j]}_z}{S^{{{\text{phy}}}}_z + S^{{\text{zoo}}}_z}\]

in \(G_{j,z}\) where

\[ \begin{align}\begin{aligned}S^{{{\text{phy}}}}_z &= \sum_{j\in{{\text{phy}}}} {p}_{j,z} {c}_j\\S^{{\text{zoo}}}_z &= \sum_{j\in{{\text{zoo}}}} {p}_{j,z} {c}_j\end{aligned}\end{align} \]

and \(S^{[j]}_z\) is the sum for the class plankton \(j\) belongs to. This is not implemented yet!

Gains from grazing:

\[ \begin{align}\begin{aligned}g^{{\mathrm{C}}}_z &= \sum_j G_{j,z} a_{j,z} {{\text{reg}}}^{Q{\mathrm{C}}}_z\\g^{{\mathrm{P}}}_z &= \sum_j G_{j,z} a_{j,z} {{\text{reg}}}^{Q{\mathrm{P}}}_z Q^{\mathrm{P}}_j \qquad\text{if }\op{DARWIN\_ALLOW\_PQUOTA}\\&\dots\\g^{\op{DOC}} &= \sum_{j,z} G_{j,z} (1 - a_{j,z} {{\text{reg}}}^{Q{\mathrm{C}}}_z) (1 - f^{\text{exp graz}}_{j,z})\\g^{\op{DOP}} &= \sum_{j,z} \begin{cases} G_{j,z} (1 - a_{j,z} {{\text{reg}}}^{Q{\mathrm{P}}}_z) (1 - f^{\text{exp graz}}_{j,z}) Q^{\mathrm{P}}_j &\text{if }\op{DARWIN\_ALLOW\_PQUOTA}\\ G_{j,z} (R^{{\mathrm{P}}:{\mathrm{C}}}_j - a_{j,z} R^{{\mathrm{P}}:{\mathrm{C}}}_z) (1 - f^{\text{exp graz}}_{j,z}) &\text{else} \end{cases}\\&\dots\\g^{\op{POC}} &= \sum_{j,z} G_{j,z} (1 - a_{j,z} {{\text{reg}}}^{Q{\mathrm{C}}}_z) f^{\text{exp graz}}_{j,z}\\g^{\op{POP}} &= \sum_{j,z} \begin{cases} G_{j,z} (1 - a_{j,z} {{\text{reg}}}^{Q{\mathrm{P}}}_z) f^{\text{exp graz}}_{j,z} Q^{\mathrm{P}}_j &\text{if }\op{DARWIN\_ALLOW\_PQUOTA}\\ G_{j,z} (R^{{\mathrm{P}}:{\mathrm{C}}}_j - a_{j,z} R^{{\mathrm{P}}:{\mathrm{C}}}_z) f^{\text{exp graz}}_{j,z} &\text{else} \end{cases}\\&\dots\\g^{\op{POSi}} &= \sum_{j,z} \begin{cases} G_{j,z} Q^{\op{Si}}_j &\text{if }\op{DARWIN\_ALLOW\_SIQUOTA}\\ G_{j,z} R^{{\op{Si}}:{\mathrm{C}}}_j &\text{else} \end{cases}\\g^{\op{PIC}} &= \sum_{j} G_{j} R^{{\text{PIC:POC}}}_j\end{aligned}\end{align} \]

where

\[ \begin{align}\begin{aligned}{{\text{reg}}}^{Q{\mathrm{P}}}_z &= \left( \left[ \frac{Q^{{\mathrm{P}}\max}_z - Q^{{\mathrm{P}}}_z} {Q^{{\mathrm{P}}\max}_z - Q^{{\mathrm{P}}\min}_z} \right]_0^1 \right)^{h_{\op{G}}}\\&\dots\\{{\text{reg}}}^{Q{\mathrm{C}}}_z &= \left( \min\left\{ \frac{Q^{{\mathrm{P}}}_z - Q^{{\mathrm{P}}\min}_z}{Q^{{\mathrm{P}}\max}_z - Q^{{\mathrm{P}}\min}_z}, \frac{Q^{{\mathrm{N}}}_z - Q^{{\mathrm{N}}\min}_z}{Q^{{\mathrm{N}}\max}_z - Q^{{\mathrm{N}}\min}_z}, \frac{Q^{\op{Fe}}_z - Q^{\op{Fe}\min}_z}{Q^{\op{Fe}\max}_z - Q^{\op{Fe}\min}_z} \right\}_0^1 \right)^{h_{\op{G}}}\\& \qquad\text{(only quota elements)}\end{aligned}\end{align} \]

and \(h_{\op{G}}\) is the Hill number for grazing (hillnumGraz, default 1).

8.7.3.17.1. Implementation

In order to reduce the number of double (predator-prey) sums as much as possible while still maintaining some code readability, the above sums are computed in darwin_plankton.F via \(G_j\), \(g^{\mathrm{C}}_z\) and the following auxiliary sums:

\[ \begin{align}\begin{aligned}G^{\exp}_j &= \sum_z G_{j,z} f^{\text{exp graz}}_{j,z} \;,\\g^{\mathrm{C}\exp}_z &= \sum_j G_{j,z} a_{j,z} {{\text{reg}}}^{Q{\mathrm{C}}}_z f^{\text{exp graz}}_{j,z} \;,\end{aligned}\end{align} \]

and for quotas elements additionally \(g^{\mathrm{P}}_z\), …, and

\[ \begin{align}\begin{aligned}g^{\mathrm{P}\exp}_z &= \sum_j G_{j,z} a_{j,z} {{\text{reg}}}^{Q{\mathrm{P}}}_z Q^{\mathrm{P}}_j f^{\text{exp graz}}_{j,z}\\&\ldots\end{aligned}\end{align} \]

The remaining terms are then computed as

\[ \begin{align}\begin{aligned}g^{\op{POC}} &= \sum_j G^{\exp}_j - \sum_z g^{\mathrm{C}\exp}_z\\g^{\op{DOC}} &= g^{\op{OC}} - g^{\op{POC}}\end{aligned}\end{align} \]

where

\[g^{\op{OC}} = \sum_j G_j - \sum_z g^{\mathrm{C}}_z \;.\]

For other non-quota elements:

\[ \begin{align}\begin{aligned}g^{\op{POP}} &= \sum_j G^{\exp}_j R^{\mathrm{P}:\mathrm{C}}_j - \sum_z g^{\mathrm{C}\exp}_z R^{\mathrm{P}:\mathrm{C}}_z\\g^{\op{DOP}} &= g^{\op{OP}} - g^{\op{POP}}\end{aligned}\end{align} \]

where

\[g^{\op{OP}} = \sum_j G_j R^{\mathrm{P}:\mathrm{C}}_j - \sum_z g^{\mathrm{C}}_z R^{\mathrm{P}:\mathrm{C}}_z \;.\]

For quota elements:

\[ \begin{align}\begin{aligned}g^{\op{POP}} &= \sum_j G^{\exp}_j Q^{\mathrm{P}}_j - \sum_z g^{\mathrm{P}\exp}_z\\g^{\op{DOP}} &= g^{\op{OP}} - g^{\op{POP}}\end{aligned}\end{align} \]

where

\[g^{\op{OP}} = \sum_j G_j Q^{\mathrm{P}}_j - \sum_z g^{\mathrm{P}}_z \;.\]

8.7.3.17.2. Runtime Parameters

Grazing parameters are given in Table 8.52.

Table 8.52 Grazing parameters

Trait

Param

Sym

Default

Units

Description

grazemax

a_grazemax

\(g^{\op{max}}_z\)

21.9/day·V-0.16

s-1

maximum grazing rate

kgrazesat

a_kgrazesat

\(k^{\op{graz}}_z\)

1.0

mmol C m-3

grazing half-saturation concentration

tempGraz

grp_tempGraz

\(e^{\op{graz}}_j\)

1

1: grazing is temperature dependent, 0: turn dependence off

inhib_graz

\(i_{\op{graz}}\)

1.0

m3 / mmol C

inverse decay scale for grazing inhibition

inhib_graz_exp

\(e_{\op{inhib}}\)

0.0

exponent for grazing inhibition (0 to turn off inhibition)

hillnumGraz

\(h_{\op{G}}\)

1.0

exponent for limiting quota uptake in grazing

hollexp

\(h\)

1.0

grazing exponential 1= “Holling 2”, 2= “Holling 3”

phygrazmin

\(c^{\min}_{\op{graz}}\)

120E-10

mmol C m-3

minimum total prey conc for grazing to occur

See Table 8.36 for stochiometry and quota-related parameters.

Table 8.53 Trait matrices for grazing; indices (prey, pred); unitless

Trait

Param

Symbol

Default

Description

palat

see below

\(p_{j,z}\)

0

palatability matrix

asseff

grp_ass_eff

\(a_{j,z}\)

0.7

assimilation efficiency matrix

ExportFracPreyPred

grp_ExportFracPreyPred

\(f^{\op{exp}\op{graz}}_{j,z}\)

0.5

fraction of unassimilated prey becoming particulate organic matter

If DARWIN_ALLOMETRIC_PALAT is defined, palatabilities are set allometrically,

\[p_{j,z} = \left[ \frac{1}{2\sigma_{\op{pp}}} \exp\left\{ -\frac{(\ln(V_z/V_j/r_{\op{opt}}))^2}{2\sigma_{\op{pp}}^2} \right\} \right]_{\ge p_{\min}}\]

grp_pred and grp_prey should be set to select which plankton groups can graze or be grazed.

Table 8.54 Allometric palatability trait parameters (unitless)

Param

Symbol

Default

Description

a,b_ppOpt

\(r_{\op{opt}}\)

1024·V0

optimum predator-prey ratio

a_ppSig

\(\sigma_{\op{pp}}\)

1

width of predator-prey curve

palat_min

\(p_{\min}\)

0

min non-zero palatability, smaller palat are set to 0 (was 1D-4 in quota)

grp_pred

0

1: can graze, 0: not

grp_prey

1

1: can be grazed, 0: not